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Conducting Spheres in Rectangular Waveguides

JOHANN H. HINKEN, MEMBER, IEEE

Abstract—A conducting sphere on the center of the broad wall of a
rectangular waveguide causes frequency independent reflections for a wide
range of frequencies. This empirically found behavior is confirmed analyti-
cally here by perturbational calculations. Furthermore experimental and
analytical results are given for a sphere located in the middle of the
waveguide cross section,

I. INTRODUCTION

ECENTLY, a problem which seems to be not too
complicated when treated perturbationally was re-
ported [1]. This problem has not been solved analytically
previously [2].
In [2] the H ,reflection coefficient |I'}] of a conductive
sphere placed on the center of the broad wall of a rectan-
gular waveguide, as shown in Fig. 1(a), is reported to be

__5.8(d/b)’
3 1+5.6(d/b)* W

where d=the sphere diameter and b =narrow waveguide
wall. This behavior had been found empirically and is
independent of frequency over a wide range of frequen-
cies, thus providing a convenient means for wide-band
impedance matching.

Before treating this problem we will assume the sphere
to be located, not adjacent to a wall, but in the middle of
the cross section as shown in Fig. 1(b). Both arrangements
will be represented by the equivalent circuit type of Fig. 2,
consisting of a symmetrical 7T-circuit within a transmis-
sion line of real wave impedance Z equal to that of the
waveguide, The sphere is assumed to be a perfect conduc-
tor; so the elements of the T-circuit will be nonresistive.

To determine X and B use is made of the formula [3, p.
4]

-, f f f (AeE-E} + ApH-H2)dV
¢ [ [ [(E-Es+ By av

)

which gives the relative resonant frequency deviation (w—
wp)/w of a conducting cavity caused by inserting a small
piece of material with permittivity e = ¢;+ Ae and permea-
bility p=p,+Ap into the formerly empty cavity (pg,€,).
E, and H,, are the complex amplitudes of the electric and
magnetic fields in the empty cavity, Ef and Hg their
complex conjugates, and E and H the fields in the per-
urbed cavity. The boldface letters denote vectors; and the
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Fig. 1. Conducting sphere in a rectangular waveguide. (a) On the center
of the broad wall. (b) In the middle of the cross section.

Fig. 2. Equivalent circuit of a sphere within a rectangular waveguide
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Fig. 3. Hg,-resonator. (a) Empty cavity. (b) Cavity with conducting
sphere. (c) Equivalent circuit of half the cavity.

integral in the numerator is effectively extended only over
those regions of the cavity volume in which Ae and Ay are
not equal to zero.

Generally, E and H are unknown, but for small inserts
of certain shapes they may be calculated from the static
approximation using the depolarizing factor or demag-
netizing factor, respectively. Furthermore (2) may be ap-
plied to inserts of ideal conductivity by choosing e-»o0
and p—0, [3, p. 9].

II. SERIES REACTANCE

In order to determine the series reactance X the empty
waveguide is assumed to be short circuited at the ends,
forming an H,g,-resonator, of guide wavelength A, as
shown by the equivalent circuit in Fig. 3(a). From the z
component ¥ of the electric vector potential

€)

= —rotE
with

0018-9480,/80,/0700-0711$00.75 ©1980 1EEE



712

ax . 2mz
Yi=D cos— = sm—Xg— 4
and the arbitrary factor D and from making use of

Maxwells equations

rotH=jwe E 5)
—r1otE =jwp H (6)
and the separation condition
2= (Y +(22)
k*=wpgeg (a)+(Ag) @)

the only nonzero components of the fields in the resonator
follow as

a7 . (ax\ . {27z
Eo=— D; sm(T)sm( Tg—) 8
D 27* | [@x 27z
HxO_' - 7(:); a—>\g Sln(—a—)CO.s( }\g ) (9)
D x ax\ . [ 2wz
Hzo—m—;cos(—;)sm(—xg—-). (10)

When the small sphere is placed into the middle of the
resonator, the resonant frequency will be changed. But
this change can be canceled by symmetrically prolonging
the resonator by two small lengths A as shown in Fig.
3(b). Now, with zero resonant frequency shift, the numer-
ator in (2) must be zero. With the only appreciable field
component H, at the discontinuities, being nearly ho-
mogenous at the sphere and being parallel to the plane at
the shifted walls, the static approximations

3

H,=o——7H 11
2t/ (an
at the sphere and
H,=H, (12)
at the shifted walls lead to
= 3 . ,hX
0= 57 Vintee — 200 fo si’—dx.  (13)

With the volume V.= 7d>/6, the value of the integral
being a/2, and p=0 we obtain

wd?

A=—0,

4ab (14)
In the symmetry plane z=0, E, =0. That means the input
impedance Z, of half the resonator, as shown in Fig. 3(c),
must be zero. With the input impedance of the short
circuited transmission line of length A;/2+A and phase
constant =2z /A, [4]

Z,=jZtan[ B(A\,/2+4)] (15)
it follows that
0=Z,=jX +jZ tan(7 + BA) (16)
or
X ad
—Z———tan(,84 b) (17)
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Fig. 4. H,,-resonator. (a) Empty cavity. (b) Cavity with conducting
sphere. (¢) Equivalent circuit of half the cavity.

IIL

In order to obtain the shunt susceptance the waveguide
is now assumed to be made a H,y-resonator by shorting it
as shown in Fig. 4(a). With an arbitrary constant G the
fields within it, corresponding to the former part, may
then be described by

SHUNT SUSCEPTANCE

\P101=Gcos(w—:)cos(gx7;—z) (18)
Ey=— G%sin(ﬁg)cos(% (19)
0= }(’% i—;: sm( ) sin( _Zg ) (20)
zo=J—_g—“~Z—zc s(zrai)c 5(2—;:5) (21)

Now, corresponding to Fig. 4(b), the sphere is located at
the middle of the resonator, where the appreciable field is
now an electrical one, see (19) to (21). The change in
resonant frequency will be canceled again by shifting the
short circuiting walls in the regions of only appreciable
magnetic field.

The static approximations for the fields are now

3

within the sphere and
Hx = HxO (23)
at the shifted walls. The zero numerator of (2) leads to
3(e—¢y) 1 47bA
- m% sphere+(nu'_p‘0)wT.ugx—g£ . (24)

With V... being as before, k=wV e, , e>00 and p=0
one obtains
d*\2K?
= Sab 25)

Due to of symmetry, at z=0,H =0 so that the input
admittance Y, in Fig. 4(c) must vanish, leading to
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Fig. 5. Equivalent circuit to calculate the reflection coefficient of the

sphere.
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Fig. 6. Reflection coefficient of a sphere in the middle of the cross
section in an X-band waveguide (¢=22.86 mm, b=10.16mm). —
follows from (31). X X X measurements.

B 1

27 X+ Ztn] B0 /4-D)] (26)
or approximately
d’k?
BZ~2tan( BA) =2tan( 237) 27)

IV. REFLECTION COEFFICIENT

The reflection coefficient of the sphere may now be
calculated from the equivalent circuit in Fig. 5; a network
of input impedance

1+2/(X/Z)—(X/Z)BZ(1+X/Z) (28)
1+/BZ(1+jX/Z)

is connected to the transmission line of wave impedance

Z. The reflection coefficient I'=(Z,/Z—1)/(Z,/Z+1) is

then approximately, i.e., for X/Z and BZ being much
smaller than one,

zZ=Z

tmi[1pz- %]

Using (17) and (27) with the tangent-functions replaced
by their arguments, with k.=« /a and with

kc 2
4 1 ( k )
one obtains

= (52 & e G|
QY

The magnitude of this reflection coefficient has been
confirmed by measurements with steel balls held by adhe-
sive tapes in the middle of a slotted X-band waveguide.
Results are shown in Fig. 6. The deviations occurring with

(29)

(30)
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Fig. 7. Estimated configuration of the electric field near the sphere S on
the conducting ground and half the ellipsoid of rotation R with equal
curvature radius at point P.

the ball of d=3 mm are assumed to result from additional
small reflections caused by the adhesive tapes.

V. SPHERE ADJACENT TO THE WALL

Now the conducting sphere is located on the bottom
y=0 as shown in Fig. 1(a). It will be assumed that due to
the nearness of the electrically conducting wall the field
distribution around the sphere will be significantly
changed only when there is an E, -field; the change in the
H -field distribution will be neglected. Then only the
value of B will be altered.

The expected electric field distribution around the con-
ducting sphere S on the conducting ground is sketched in
Fig. 7. The field strength will be low in the shade between
sphere and ground. Therefore, this almost field free region
may be filled with a conductor without effecting the
result. So the sphere is now replaced by half a conducting
ellipsoid of rotation R with equal curvature radius d/2 at
point P and of half the long axis being equal to 4. The
short axis is then determined by 2-d [5, p. 177].

Such a shading effect will not appear in the case of the
H_-field; therefore it is assumed in the following that the
magnetic field distribution is not effected by the conduct-
ing ground. The demagnetizing factor of the ellipsoid R
may be interpolated from [6, p. 22] yielding N =0.245 and
because of duality used as the depolarizing factor in the
E,-case, yielding

1 4.08

E ] =
5 T N(e—e) /ey 20~ 3084/, 0 (32
instead of (22). Furthermore in (24) V.. has to be
replaced by the volume of half the ellipsoid, being
n
Va/2= 3 d?

twice that of the sphere.
This results in a reflection coefficient whose magnitude

+\/1—(kc/k)2 X

(33)

is
5.44

()5
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Fig. 8. Reflection coefficient of a sphere on the center of the broad wall
in a rectangular waveguide with »=10.16 mm and 5/a=0.445.
——theoretically found behavior as given by (33) - - - - empirically
found behavior for small sphere diameters, see |2].

This coefficient, normalized to (d/ b)’, versus normalized
frequency k/k, is shown in Fig. 8. It agrees quite well
with the small diameter approximation of (1),

|| =5.8(d/b)’ (34)
which was found experimentally. Furthermore, the
frequency dependence of the reflection coefficient was
reported to be within 10 percent of its midband value

between 1.22<k/k < 1.7, [2], which is also confirmed by
the analytical calculations leading to (33) and Fig. 8.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-28, NO. 7, FJULY 1980

VL

A method has been shown to calculate the T-section
equivalent circuit and the reflection coefficient for a
metallic sphere in a rectangular waveguide. Experimental
and theoretical results agree quite well. The theoretical
method applied here can also be applied to the T-section
equivalent circuits for obstacles with other forms in uni-
form waveguides.

CONCLUSIONS
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On the Propagation of Leaky Waves in a
Longitudinally Slotted Rectangular Waveguide
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Abstract—The field theory approach is used to study leaky-wave propa-
gation in a rectangular waveguide with long nonresonant slots in the
narrow walls. Radiation from the slots is confined by parallel plates which
act as transmission lines guiding the energy away from the slots. The
complex dispersion equations for TE waves are examined and solved using
an iterative numerical technique. Propagation characteristics both in the
axial and transverse directions are presented, along with the electric field
distribution and power flow. Restrictions on the analysis and on the
power-handling capacity imposed by slot width also are described.
Measurements of the phase characteristics of the dominant mode are in
good agreement with theoretical values.
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I. INTRODUCTION

LOTTED WAVEGUIDES are used both as applica-
tors for material processing [1], [2] and as antennas
[3]. In particular, traveling-wave slotted structures are
used in antenna design [4] because of their ease of con-
struction and their ability to control radiation by varying
the slot geometry along the length of the guide.
Typically, the analysis of leaky-wave structures has
been carried out using a microwave network representa-
tion of the transverse discontinuity [5]. This requires a
previous knowledge of the fields which are regarded as
weak perturbations of those which would exist in the
closed perfectly conducting guide. An alternative ap-
proach is to determine the propagation coefficient from
the field solution which satisfies the boundary conditions.
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