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Conducting Spheres in Rectangular Waveguides

JOHANN H. HINKEN, MEMBER, IEEE

Abstnact-A cmufueting sphere on the center of the broad wall of a

r@mWIkW WaWgUfde caoses frequency independent reflections for a wide

range of frequencies This empirkalfy found behavior is coofkmed amdyti-

eafly here by perturbational cakufations. Furthermore experimental and

analytical reanMa are gfven for a sphere located in the ndddfe of the

wavegtdde cross sestion.

I. INTRODUCTION

R ECENTLY, a problem which seems to be not too

complicated when treated perturbationally was re-

ported [1]. This problem has not been solved analytically

previously [2].

In [2] the Hlo-reflection coefficient 1171of a conductive

sphere placed on the center of the broad wall of a rectan-

gular waveguide, as shown in Fig. l(a), is reported to be

{r, = 5.8(d/b)3
(1)

1+ 5.6(d/b)4

where d= the sphere diameter and b = narrow waveguide

wall. This behavior had been found empirically and is

independent of frequency over a wide range of frequen-

cies, thus providing a convenient means for wide-band

impedance matching.

Before treating this problem we will assume the sphere

to be located, not adjacent to a wall, but in the middle of

the cross section as shown in Fig. l(b). Both arrangements

will be represented by the equivalent circuit type of Fig. 2,

consisting of a symmetrical T-circuit within a transmis-

sion line of real wave impedance Z equal to that of the

waveguide. The sphere is assumed to be a perfect conduc-
tor; so the elements of the T-circuit will be nonresistive.

To determine X and B use is made of the formula [3, p.

4]

u—lo. JJJ(
AIsE”E; + A@FH;)dV

— . . (2)
u

LW
EE”E: i- @H;)dV

which gives the relative resonant frequency deviation (Q –

~O)/ti of a conducting cavity caused by inserting a small

piece of material with permittivity c = e. + Ac and permea-
bility p= ~ + Ap into the formerly empty cavity (PO, CO).

EO and HO are the complex amplitudes of the electric and

magnetic fields in the empty cavity, E$ and H: their

complex conjugates, and E and H the fields in the per-

urbed cavity. The boldface letters denote vectors; and the
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Fig. 1. Conducting sphere in a rectangular waveguide, (a) Gn the center
of the broad wall. (b) In the middle of the cross section.

Fig. 2. Equivalent circuit of a sphere within a rectangular waveguide
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Fig. 3. H102-resonator. (a) Empty cavity. (b) Cavity with conducting
sphere. (c) Equivalent circuit of half the cavity.

integral in the numerator is effectively extended only over

those regions of the cavity volume in which Ac and Ap are

not equal to zero.

Generally, E and H are unknown, but for small inserts

of certain shapes they may be calculated from the static

approximation using the depolarizing factor or demag-

netizing factor, respectively. Furthermore (2) may be ap-

plied to inserts of ideal conductivity by choosing .r~eo

and paO, [3, p. 9].

II. SERIESREACTANCE

In order to determine the series reactance X the empty

waveguide is assumed to be short circuited at the ends,

forming an H102-resonator, of guide wavelength & as

shown by the equivalent circuit in Fig. 3(a). From the z

component ~ of the electric vector potential

F= –rotE (3)

with
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(4)
u %

and the arbitrary factor D and from making use of

Maxwells equations

rot H= ja@ (5)

– rot E = jtip,OH (6)

and the separation condition

(7)

the only nonzero components of the fields in the resonator

follow as

(8)

When the small sphere is placed into t~e’ middle of the

resonator, the resonant frequency will be changed. But

this change can be canceled by symmetrically prolonging

the resonator by two small lengths A as shown in Fig.

3(b). Now, with zero resonant frequency shift, the numer-

ator in (2) must be zero. With the only appreciable field

component Hxo at the discontinuities, being nearly ho-

mogeneous at the sphere and being parallel to the plane at

the shifted walls, the static approximations

Hx =
3H

2+p/po ‘0
(11)

at the sphere and

Hx = Hxo (12)

at the shifted walls lead to

O= 3 V~phere– 2Ab~”sin2Z dx.
2+p/po

(13)
o a

With the volume V,phere= rd3/6, the value of the integral

being a/2, and p = O we obtain

(14)

In the symmetry plane z = O, E,= O.That means the input

impedance Z. of half the resonator, as shown in Fig. 3(c),

must be zero. With the input impedance of the short

circuited transmission line of length Ag/2 + A and phase

constant ~= 2r/Ag [4]

Z, =jZtan[ P(Ag/2 +A) ] (15)

it follows that

O= Z, =jX +jZ tan(~ + ,6A) (16)
or

x ()~d3
—=–tan fl~ .
z

(17)

(a)

(c)

Fig. 4. Hlol-resonator. (a) Empty cavity. (b) Cavity with conducting
sphere. (c) Equivalent circuit of half the cavity.

III. SHUNT SUSCEPTANCE

In order to obtain the shunt susceptance the waveguide

is now assumed to be made a Hlol-resonator by shorting it

as shown in Fig. 4(a). With an arbitrary constant G the

fields within it, corresponding to the former part, may

then be described by

*,0,=-(3COS(:)
EYo=-G~sin(~)cos(~)

H= G2T2.

––s’n(:)sin(;) ’20)‘0 jop aAg

H=GT2
–-COS(:)COS(:). (21)

‘0 jup a2

(18)

(19)

Now, corresponding to Fig. 4(b), the sphere is located at

the middle of the resonator, where the appreciable field is

now an electrical one, see (19) to (21). The change in

resonant frequency will be canceled again by shifting the

short circuiting walls in the regions of only appreciable

magnetic field.

The static approximations for the fields are now

Ey =
3E

2+6/c. Y“
(22)

within the sphere and

HX = Hxo (23)

at the shifted walls. The zero numerator of (2) leads to

With V,phere being as before, k =0%, e-w and p =0

one obtains

d3&k2
A=—

8vab “
(25)

Due to of symmetry, at z = O,HX = O so that the input

admittance Y. in Fig. 4(c) must vanish. leadimz to
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Fig. 5. Equivalent circuit to calculate the reflection coefficient of the
sphere.
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Fig. 6. Reflection coefficient of a sphere in the middle of the cross
section in an X-band waveguide (a= 22.86 m b= 10.16mm). —
foflows from (31). X X X measurements.

B—=
2 X+ Ztan[ ~(As/4-A)]

(26)

or approximately

()rrd3k2
BZm2 tan( PA) =2 tan —

2~ab “
(27)

IV. REFLECTION COEFFICIENT

The reflection coefficient of the sphere may now be

calculated from the equivalent circuit in Fig. 5; a network

of input impedance

z = z 1 +2j(X/Z)–(X/Z)BZ(l +jX/Z) (28)
r

1 +jBZ(l +jX/Z)

is connected to the transmission line of wave impedance

Z. The reflection coefficient r =(2,/2 – 1)/(2,/2 +1) is

then approximately, i.e., for X/Z and BZ being much

smaller than one,

‘+BZ-2 (29)

Using (17) and (27) with the tangent-functions replaced

by their arguments, with kC= ~/a and with

one obtains

(30)

(31)

The magnitude of this reflection coefficient has been

confirmed by measurements with steel balls held by adhe-

sive tapes in the middle of a slotted X-band waveguide.

Results are shown in Fig. 6. The deviations occurring with
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Fig. 7. Estimated configuration of the electric field near the sphere S on
the conducting ground and half the ellipsoid of rotation R with equal
curvature radius at point P.

the ball of d= 3 mm are assumed to result from additional

small reflections caused by the adhesive tapes.

V. SPHERE ADJACENT TO THE WALL

Now the conducting sphere is located on the bottom

Y = O as shown in Fig. l(a). It will be assumed that due to

the nearness of the electrically conducting wall the field

distribution around the sphere will be significantly

changed only when there is an E=-field; the change in the

llx-field distribution will be neglected. Then only the

value of B will be altered.

The expected electric field distribution around the con-

ducting sphere S on the conducting ground is sketched in

Fig. 7. The field strength will be low in the shade between

sphere and ground. Therefore, this almost field free region

may be filled with a conductor without effecting the

result. So the sphere is now replaced by half a conducting

ellipsoid of rotation 1? with equal curvature radius d/2 at

point P and of half the long axis being equal to d. The

short axis is then determined by 2 .d [5, p. 177].

Such a shading effect will not appear in the case of the

HX-field; therefore it is assumed in the following that the

magnetic field distribution is not effected by the conduct-

ing ground. The demagnetizing factor of the ellipsoid R

may be interpolated from [6, p. 22] yielding N= 0.245 and

because of duality used as the depolarizing factor in the

E=-case, yielding

EY=– 1 EYO=
4.08 E

1+ N(c – CO)/CO 3.08+ c/cO Y“
(32)

instead of (22). Furthermore in (24) V~P~e,ehas to be

replaced by the volume of half the ellipsoid, being

twice that of the sphere.

This results in a reflection coefficient whose magnitude

is

(33)
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Fig. 8. Reflection coefficient of a sphere on the center of the broad wall
in a rectangular waveguide with b = 10.16 mm and b/a= 0.445.
—theoretically found behavior as given by (33) ---- empirically
found behavior for small sphere diameters, see 12].

This coefficient, normalized to (d/b)3, versus normalized

frequency k/kC is shown in Fig. 8. It agrees quite

with the small diameter approximation of (l),

lrl = 5.8(d/b)3

which was found experimentally. Furthermore,

frequency dependence of the reflection coefficient

well

(34)

the

was

reported to be within 10 percent of its midband value

between 1.22< k/kC <1.7, [2], which is also confirmed by

the analytical calculations leading to (33) and Fig. 8.

VI. CONCLUSIONS

A method has been shown to calculate the T-section

equivalent circuit and the reflection coefficient for a

metallic sphere in a rectangular waveguide. Experimental

and theoretical results agree quite well. The theoretical

method applied here can also be applied to the T-section

equivalent circuits

form waveguides.

for obstacles with other forms in uni-
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On the Propagation of Leaky Waves in a
Longitudinally Slotted Rectangular Waveguide
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Abstract-The field theory approach is used to study leaky-wave propa-

gation in a rectangular wavegrride with long nonresonant slots in the

narrow walls. Radiation from the slots is eonfkd by paraffel plates which

act mi transmission lima guitimg the energy away from the slots. The

complex dispersion equations for TE waves are exmafrr ed and SOhWf using

an iterative numericaf technique. Propagation characteristics both in the

axiaf and transverse directions are preaentedj along with the electric field

distribution and power flow. Restrictions on the anafysis and on the
power-fmndffng capacity imposed by slot width afsa are described.

Measurements of the phase characteristics of the dominant mode are in
good agreement with theoretical vafues.
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I. INTRODUCTION

LOTTED WAVEGUIDES are used both as applica-

tors for material processing [1], [2] and as antennas

In particular, traveling-wave slotted structures are
used in antenna design [4] because of their ease of con-

struction and their ability to control radiation by varying

the slot geometry along the length of the guide.

Typically, the analysis of leaky-wave structures has

been carried out using a microwave network representa-

tion of the transverse discontinuity [5]. This requires a

previous knowledge of the fields which are regarded as

weak perturbations of those which would exist in the

closed perfectly conducting guide. An alternative ap-

proach is to determine the propagation coefficient from

the field solution which satisfies the boundary conditions.
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